

Introduction to the China-ADS project and accelerator design

Jingyu Tang

Institute of High Energy Physics, CAS Beijing, China

FNAL Seminar, August 18, 2011

- Introduction to the C-ADS project
 - ◆ Some information about China nuclear power
 - Roadmap of C-ADS program
 - Organization of the C-ADS project phase I
- Preliminary accelerator design
 - Physics design scheme
 - ◆ Key technology R&D for C-ADS accelerator

Introduction to the C-ADS project

Nuclear Power in China

Operating reactors : $10.23 \text{ GW}_e/13 \text{ sets}$

Constructing reactors: 25.90 GW_e/23 sets

Prepare to construct: $44.27 \text{ GW}_{e}/39 \text{ sets}$

Propose to construct: 120.0 GW_e/120 sets

拟建核电项目

3030

2020

70GWe (5% total electricity)

2030

200GWe (10% total electricity)

2050

400GWe (22% total electricity)

May be more than total nuclear power in the world right now!

Nuclear waste accumulated by 2050 in China

Year	2000	2010	2020	2050
Power (GW)	6	20	40	240
Spend fuel (t)			7200	>50000
Minor actinides (t)			4	>30
Long live fission products (t)			17	>120

Advanced Nuclear Energy Programs in China

- The strategy of sustainable fission energy in China consoled by top Chinese scientists:
 - Gen-IV reactors for nuclear fuel breeding
 - ▶ ADS for transmutation
 - Nuclear waste is a bottleneck for nuclear power development.
 - ➤ ADS has been recognized as a good option for nuclear waste transmutation.
- As a long-term program, ADS and TMSR (Thorium-based Melten Salt Reactor) R&Ds will be supported by CAS.
- Budgets for C-ADS and TMSR (both Phase 1) have been allocated by the central government.

Special Nuclear Energy Program in CAS

TMSR

 Diversify nuclear fuel source
 (Thorium is richer than uranium and more dispersed on the earth, less waste etc.)

ADS

-Transmutation of long-lived nuclear waste

Demo facilities for industrial applications

Schematic of C-ADS

Roadmap of C-ADS program

R&D Team & Sites for C-ADS

Team

- CAS: IHEP, IMP, IPP, USTC, .
- 3 NP Com. + Univ.
- Local government cooperation
- International collaboration
- Host of the future facility
 - A new CAS institute will be established to host the C-ADS facility
 - 🔀 Site candidate: Erdós (Inner Mongolia)
- R&D infrastructure
 - Labs and infrastructure at the home institutes before the new institute is ready

Organization of C-ADS Phases 0&I

- Three major systems
 - Accelerator:

IHEP as leader, responsible for one injector and the main linac and

IMP as collaborator, responsible for another injector Joint IHEP-IMP group on accelerator physics

- Target: IMP as leader
- Reactor: IPP (Institute of Plasma Physics, as leader) and USTC (University of Science and Technology of China)

- Infrastructure (to be built in leading institutes)
 - Superconducting RF test platform
 - Radio-chemistry study platform
 - Pb-Bi core simulation and mock-up platform
 - Nuclear database

Preliminary design of the C-ADS accelerator

Main specifications of the C-ADS driver linac

Particle	Proton	
Energy	1.5	GeV
Current	10	mA
Beam power	15	MW
Frequency	162.5/325/650	MHz
Duty factor	100	%
Beam loss	<1 (or 0.3)	W/m
Beam trips /year	<25000 <2500 <25	1s <t<10s 10s<t<5m t>5m</t<5m </t<10s

Design philosophy

- Accelerator choice: superconducting linac is preferred.
 - Straight trajectory: easy extraction and injection.
 - Easy upgrading.
 - Large aperture.
 - Low AC power consumption.
 - Independently powered structures.
- To meet the very strict reliability requirement
 - De-rating of critical components (over-design).
 - Component redundancy and spares on line.
 - Component failure tolerance.

Layout of the C-ADS linac

Lattice design requirements for highintensity proton linacs

- Zero current phase advance of transverse and longitudinal oscillations should be kept below 90° per focusing period to avoid parametric resonance.
- Transverse and longitudinal wavenumbers must change adiabatically.
- Avoid energy exchange between the transverse and longitudinal planes via space-charge resonances.
- Provide proper matching in the lattice transitions to avoid serious halo formation.

The RFQ

- RFQs are the only accelerating components in room- temperature
 - ➤ It is very difficult to develop a CW proton RFQ due to very large heat load density
 - Four-rod structure
 - ➤ Different choice on RF frequency: 162.5 or 325 MHz
- Design constraints from the previous RFQ experience at IHEP:
 - Section length: <1.2</p>
 - Number of sections: <4

Parameters	Value	
Frequency (MHz) 325		
Injection energy (keV) 35		
Output energy (MeV)	3.2128	
Pulsed beam current (mA)	15	
Beam duty factor	y factor 100%	
Inter-vane voltage $V(kV)$ 55		
Beam transmission 98.7%		
Average bore radius r_{θ} (mm)	2.775	
Vane-tip curvature $ ho_t$ (mm)	2.775	
Maximum surface field (MV/m)	28.88 (1.62Kilp.)	
Cavity power dissipation (kW)	272.94 [1.4* Psuperfish (194.96)]	
Total power (kW)	320.94	Max Density:
Input norm. rms emittance(x,y,z) $(\pi mm.mrad)$	0.2/0.2/0	(3.77 kW/cm ²)
Output norm. rms emittance(x/y/z) $(\pi mm.mrad/Mev-deg)$	0.2/0.2/0.0612	
Vane length (cm)	467.75	
Accelerator length (cm)	469.95	

中国科学院為能物別為完析 Institute of High Energy Physics Chinese Academy of Sciences

MEBT1 layout

Spoke012 cavities

β_{g}	Freq.	Uacc. Max	Emax	Bmax	R/Q
	MHz	MV	MV/m	mT	IV Q
0.12	325	0.63	25	42	125

Lattice design of spoke012 section: Solution 1

Dynamics study results

RMS envelope <3 mm

Maximum envelope < 10 mm

Emittance growth

Longitudinal growth: <10%

Solution 2: one crymodule with increased acceleration gradient

Dynamics study results

RMS envelope: < 2 mm

Emittance growth

Transverse emittance growth: < 2%

Longitudinal emittance growth: < 4%

Solution 3: based on spoke cavities on $3\beta\lambda/2$ mode

- Motivation
 - Poor performance of very low beta cavity
 - Mechanical stability
 - Frequency stability
- Method with 3βλ/2 mode
- Increasing the gap width and stem thickness
- Gains
 - Rigidity, Frequency sensitivity, Voltage
- Demerit
 - Narrower β range (one more type cavity)

Lattice based on 3βλ/2 cavities

Solenoid lengt=250mm

BPM, lengt 100mm

Total number of cavities: 12

M_spoke026: 5

M_spoke036: 7

Maximum surface field: 32.5 MV/m

CM length: 10.8 m;

Dynamics study results

MEBT2

One branch (of two):

10 Quad +5 Buncher + 2 solenoid+2 Bend Total length is 12 m.

- No buncher in dispersive section
- 5 Quad+ 2 bend for achromatism and keep beam envelope smooth
- 3 bunchers for longitudinal matching (2 are standard Spoke021 cells)
- Translational distance 45cm for magnet installation

List of superconducting cavities in main linac

Cavity type	$eta_{ m g}$	Freq. MHz	Uacc. Max MV	Emax MV/m	Bmax mT
single spoke	0.21	325	1.32	25/32.5	44.8/58.2
Single spoke	0.40	325	2.79	25/32.5	64.8/84.2
5-cell elliptical	0.63	650	7.68	35/45.5	48.3/62.8
5-cell elliptical	0.82	650	15.47	35/45.5	70.4/91.5

Acceleration efficiency

- 1. Efficiency for each cavity is greater than 0.5;
- 2. Acceleration gradient changes smoothly at the transition between different sections;

Lattice design: Spoke021 and Spoke040

300

•Period length: 2.168 m

Total periods: 14

Total cavities: 28

•Energy range: 10~34 MeV

•Period length: 3.8 m

Total periods: 18

•Total cavities: 72

Energy range: 34~178 MeV

Lattice design: Ellip063

•Period length: 7.508 m

•Total periods: 7

Total cavities: 28

Energy range: 178~367 MeV

Lattice design: Ellip082

•Period length: 9.75 m

Total periods: 17

Total cavities: 85

Energy range: 367~1500 MeV

中國科學院為能物程确究所 Institute of High Energy Physics Chinese Academy of Sciences

Dynamics study results

Zero-current phase advance

Emittance evolution

Local compensation of failures

- Preliminary studies on local compensation of cavity and solenoid failures have been carried out for Spoke021 section and Spoke040 section.
- One cavity failure in a cell can be well compensated by adjusting neighboring cavities. (rms emittance growth less than 10%)
- One solenoid failure is difficult to be compensated, especially at the beginning of the Spoke021 section

Failure compensation at Spoke021 section

Key technology R&D for C-ADS linac

Strategy

- Parallel developments of different scheme or technical solutions for the injector (IHEP and IMP)
- Development by steps (Phase 0, I, II, III)

Some key technology R&D

- Ion Source: stable operation
- CW RFQ: cooling problem
- SC Spoke cavities: development, unproven performance
- SC CH cavities: very challenging (candidate for IMP injector)
- High power couplers: especially for CW RFQ
- Cryomodule: long cryomodule with many cavities and solenoids
- RF power source (CW Klystron, CW SSA, LLRF)
- Control & Instrumentation
- **>** ...

R&D studies (Phase 0)

- The budget has been approved (1.8 BCHY or 280 M\$ in total)
 - ➤ Accelerator: 640 MCHY (425 M for IHEP and 215 M for IMP)
- **2011-2013**
 - >Physics design and technical designs
 - ➤ Developing CW RFQ, SC cavity prototypes (spoke, HWR and CH) for the injectors
 - CW test of first 5 MeV of two injectors
 - ➤ Infrastructure or laboratory building-up
- **2014-2016**
 - Two different injectors testing with CW, 10-MeV and 10-mA
 - ➤ Construction of main linac section (10-50 MeV)
 - CW test of the 50-MeV linace

Some R&D work already carried out

Ion Source: ECR & LEBT (IMP)

H⁺、H₂⁺ & H₃⁺ Beam profile

High-duty factor RFQ (IHEP)

 A 3.5 MeV - 40 mA RFQ of 7-15% duty factor (supported by "973" program) was constructed and commissioned at IHEP, one of the most powerful RFQs under operation condition.

	973 RFQ	ADS RFQ
Frequency	352MHz	325MHz
Energy	3.5MeV	3MeV
Duty Factor	~15%	CW
Operating	Short time	Long time

High power input couplers (IHEP)

(Supported by the BEPC SC cavity development program)

≥400kW

Cryomodules (IHEP)

Cryomodule for BEPCII 500MHz SC Cavity

Cryomodule named PXFEL1 was passed the cryogenic test at DESY in July. 2009.

Control & Instrumentation (IHEP)

Controls:

- Digitalized control system has been developed for the CSNS project, and can be used in the C-ADS
- EPICS, XAL etc. developed with the CSNS project (BEPCII)

Instrumentation

Many beam diagnostic devices have been developed or are under development under the "973" program and the CSNS project. They can be used in the C-ADS, such as BLM (including ion chamber, FBLM), BPM, BCT, Wire Scanner, double-slit emittance measurement system.

Summary

- I. Sustainable nuclear energy has high priority in China.
- II. The C-ADS program has been officially started under the coordination of CAS, and is led by three CAS institutes.
- III. The R&D phase for the driver linac is to build a SC linac with a CW beam of 50-MeV and 10-mA, and relevant infrastructure.
- IV. It is a great challenge to build a high-performance CW proton linac. Strong collaboration with international leading laboratories is very important. This is not only an important step towards the ADS but also a contribution to the accelerator community.

Thanks for your attention!

